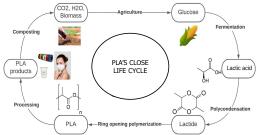
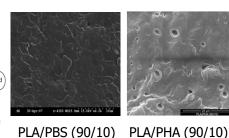
NC STATE UNIVERSITY

23-271SB: Thermo-rheological behavior of biopolymer and biopolymer blends

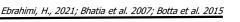

Sarvesh Anand Nadkarni, Dr. Saad Khan


Department of Chemical & Biomolecular Engineering, North Carolina State University

Objectives

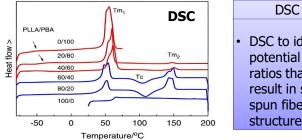
- Evaluate the rheological behavior of biopolymer and their blends using steadystate shear, small and large amplitude oscillatory shear
- Investigate phase separation as a function of blend ratios and temperatures .
- Characterize thermal properties glass transition temperature, crystallization ٠ rate, and melting range of blends using DSC
- Correlate results of thermo-rheological measurements to fiber spinnability and mechanical properties

Why PLA Blends



Rheology

Biopolymer Blends PLA PHA PBS	Blends PLA	Steady shear viscosity - Zero shear viscosity (n ₀) - Shear-thinning regime SAOS Experiments - Elastic (G) and viscous (G') moduli
		Relaxation time and Deborah (<i>De</i>) number Optimum processing, blend ratios Degradation kinetics Processing window, spinnability
Dry mixing / Compounding	Variables Temperature, Time, Frequency,	LAOS Experiments nonlinear High strain amplitude response at different frequencies
	Pre-processing conditions	Phase separation under high shear


Slend ratic

Under SAOS

Thermal Characterization

DSC	TGA
 DSC to identify	 TGA to confirm
potential blend	degradation
ratios that may	profiles of
result in strong	biopolymers
spun fiber	and their
structures	blends

Mechanical Performance

Conclusion

nning solution tank

double screw extrud

· Develop and analyze spun fibers of optimized biopolymer blends

Zhao, L., Peng, X., Liu, X. et al., 2013

- Mechanical properties to be evaluated using a DMA accessory on the rheometer
- Determine how material properties differ at the same fiber size vs conventional petroleum-based PP

Wang, Yang & Song, Yuanjun et al., 2016

- Considerable work has been done on characterizing biopolymers, but there remains a significant knowledge gap in several areas
- This study will identify process critical information such as optimal blend ratio for different PLA blends, degradation kinetics, and Deborah number to obtain processing window for fiber spinning
- LAOS will help study the phase separation of PLA/PHA or PLA/PBS, to gain insight into their behavior during industrial processing

